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Abstract 

 

An item response theory (IRT) based procedure is proposed for reducing the biasing effects of 

speededness on end-of-test item characteristics. The procedure characterizes speeded responses 

as atypical responses (e.g., due to random guesses or omits) under the nominal response model to 

items at the end of the test. Examinee responses are probabilistically deleted from the calibration 

data set (i.e., treated as “missing”) in proportion to the ir likelihood of being speeded. Real data 

from a university mathematics placement test involving common items administered at different 

locations on different test forms are used to demonstrate implementation of the procedure and 

evaluate it effectiveness. Application of the procedure is shown to lead to a reduction in the bias 

of estimated item and test characteristics. 
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An IRT-based response likelihood approach for addressing test speededness 

Introduction 

 Test speededness effects are often observed when examinees do not have sufficient time 

to finish a test. When examinees are rushed or run out of time, they often fail to adequately 

answer items at the end of the test. Speededness creates methodological problems in item 

response theory (IRT), including over-estimates of item difficulty parameters (Bolt, Cohen, & 

Wollack, 2002; Kingston & Dorans, 1984; Oshima, 1994) and multidimensionality (Lord, 1956; 

Lord & Novick, 1968; Myers, 1952). 

 Several methods have now been proposed that model speededness from a single test 

administration and are capable of reducing the biasing effects of speededness on item and test 

characteristics. These include the mixture Rasch model (MRM; Bolt, et al., 2002), the multiclass 

mixture Rasch model (MMRM; Mroch, Bolt, & Wollack, 2005), and the HYBRID model 

(Yamamoto, 1987; Yamamoto & Everson, 1997). These IRT models address speededness 

through the introduction of latent examinee classes that are distinguished by speededness effects. 

Although these models offer interesting possibilities for identifying and reducing the effects of 

speededness, they have some disadvantages that may limit their utility in practice.  

 First, these methods assume that examinees move sequentially through the test in 

answering items; once an examinee is speeded on one item, he/she is assumed to be speeded on 

all subsequent items. While this assumption may be appropriate for some examinees, others may 

proceed in a nonsequential fashion. For example, some examinees may solve items they know 

first, regardless of their location on the test. Second, the methods consider only certain sources of 

evidence of speededness. For example, the HYBRID model, MRM, and MMRM only consider 

the correctness of response in modeling speededness. Thus, one of the standard indicators of 
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speededness often used by testing programs, omitted responses at the end of the test (or, more 

strictly, not reached items), is not incorporated. Omitted responses at the end of the test are likely 

to be stronger indicators of speededness than are incorrect responses, making it desirable to 

retain this information when modeling speededness. On multiple choice items in particular, there 

may also be value in attending to the specific distractors chosen on incorrect responses, as 

distractor selection may be related to ability. Consequently, speededness behavior that results in 

random guessing may also be reflected by the types of distractors selected (e.g., higher ability 

examinees are more likely to select a distractor representing low ability when guessing 

randomly). 

 This study is driven in part by the desire to explore inclusion of end-of-test omits and 

aberrant end-of-test distractor selection as evidence of speededness. We propose an IRT-based 

procedure for reducing the effects of speededness that uses the likelihood of item responses as 

evidence of speededness. Because atypical responses can take several forms (e.g., omits, or 

unlikely distractor selection), the proposed procedure can account for speededness that emerges 

in the form of guessing, rushed, and omitted responses. 

Compared to existing IRT-based methods for reducing the effects of speededness, the 

proposed procedure has several anticipated advantages. First, as noted, it uses information 

contained in the response options as opposed to only the correctness of the responses. Second, it 

incorporates omitted responses, which provide perhaps the strongest evidence of speededness. 

Third, it does not assume a sequential ordering in the responses to end-of-test items, and thus 

relaxes a primary assumption underlying methods such as the HYBRID model, MRM, and 

MMRM. Fourth, the proposed procedure can be applied to data sets possessing large numbers of 
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items and examinee responses, without facing the computational limitations of alternative 

procedures.  

The proposed procedure integrates several methodologies, which will be described in the 

next section. First, we will briefly discuss the nominal response model (NRM; Bock, 1972), 

followed by a description of a method for incorporating omitted responses. Then we will 

describe the idea behind the randomized response methodology used in survey research, and also 

discuss the concept of person fit, two related strategies to that advocated here. 

The Nominal Response Model 

The NRM is a polytomous IRT model that can be used to model the probability of 

responding in each category of a multiple-choice item. The probability of examinee j choosing 

category h for item i is modeled by a multivariate logit (Bock, 1972): 
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uij is the response category chosen by examinee j to item i (where categories are h = 1, 2, … mi), 

θj is an ability parameter for person j, 

cih, is an intercept parameter for category h of item i,  

aih, is a slope parameter for category h of item i, where 

the category intercepts and slopes sum to zero for each item. 
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set of NRM curves for a five-category multiple choice item (plus an omit category) is presented 

in Figure 1. Each curve illustrates an option response function (ORF), which when portrayed 

graphically is known as an option characteristic curve (OCC). The OCCs and corresponding 

ORFs represent the probability that an examinee at a given ability will respond in each response 

category; this probability is referred to as the response probability. For example, in Figure 1 the 

ORF with the largest response probability for an examinee with θ = 0 is “C” (the correct 

response; which occurs with probability .8). Including omitted responses as evidence of 

speededness is described next. 

Omitted Responses as Evidence of Test Speededness 

Omitted responses are generally good indicators of speededness. However, it is typically 

not realistic to use omits as the sole indicators of speededness, especially when examinees are 

encouraged to make guesses when they do not know an answer or run short on time. For a 

particular test, the utility of using omits as evidence of speededness requires that some amount of 

omitting behavior be observed. Before including omitted responses as evidence of speededness, 

we should examine the extent to which omits appear useful to include as evidence of 

speededness. For purposes of this study, more frequent omitted responses at the end of the test 

were used to justify including omits as evidence of speededness. As part of the proposed 

procedure for minimizing the effects of speededness, omitted responses were treated as a 

separate response category under the NRM. Next, we describe the notion of randomized 

response, a methodology that inspired the likelihood-based random elimination of responses 

under the proposed procedure. 
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Using Randomized Responses in Testing 

 The method of randomized response was originally formulated as a methodology in 

survey research for obtaining answers to sensitive questions from respondents. These sensitive 

questions potentially lead to refusal to respond or to giving dishonest answers (Warner, 1965). 

Randomized response is meant to increase the cooperation of survey respondents by making 

their responses to a survey truthful with a certain probability. For example, to determine base 

rates of test cheating, survey respondents would flip a coin (the result of which was only 

apparent to the respondent ). If the coin were heads they would answer “yes”, and if it were tails 

they would answer truthfully. The probability of a random response is known and can be 

accounted for in marginal estimates of the truthful responses to the sensitive question (Fox, 

2005; Warner, 1965). 

The general idea behind randomized response is that observed responses have an 

additional component contributing to them (e.g., socia l desirability) besides the underlying trait 

intended to be assessed, and that this additional component leads to aberrant responses. 

Randomized responses can be used to statistically account for the aberrant responding so as to 

produce purified estimates of the underlying characteristics of items. Because the goal in an item 

analysis is to obtain marginal estimates of item characteristics (e.g., IRT estimates of 

discrimination and/or difficulty), the same general idea can be applied. We seek to determine the 

likelihood that an examinee response is due to speededness, and in turn reduce the effects of 

speededness by randomly eliminating examinee responses to end-of-test items in proportion to 

their likelihood of being speeded. In this way, an “unspeeded data set” can be created that then 

becomes the basis for calibrating an IRT model. We consider next the concept of person fit, 
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which similarly employs the use of response likelihoods in evaluating the validity of item 

responses. 

Person Fit 

A second related methodology to that introduced in this study is appropriateness 

measurement, also referred to as person fit. Person fit analysis involves identifying examinee 

response patterns that are unusual or unexpected, given a particular model (e.g., IRT model). 

Person-fit methods are often based on the assumption of a parametric IRT model (Meijer, 1996, 

2003).  

Such methods involve a two-step process. First, an IRT model is fit to a sample of normal 

or typical examinees. Second, a statistic is computed for each examinee to account for the extent 

to which his/her responses are consistent with the IRT model used to characterize performance 

(Drasgow, Levine, & Williams, 1985). Such approaches can be subdivided into likelihood-based 

methods and residual-based methods (Embretson & Reise, 2000; Meijer & Sijtsma, 2001). 

Likelihood-based methods quantify the likelihood of a response pattern assuming a particular 

IRT model. Patterns that are not very likely given an examinee’s ability are indicative of aberrant 

responses (Drasgow, et al., 1985). Residual-based methods compare an examinee’s observed 

item response to the item response predicted by the IRT model. Differences between observed 

and predicted responses quantify aberrant responses (Bejar, 1985; Tatsuoka, 1996). As 

conceptualized in this study, speededness is expected to lead to unusual patterns of response, and 

is thus consistent with the general framework of person fit. 

Bejar (1985) used a parametric residual-based person-fit statistic to examine simulated 

data against data from the Test of English as a Foreign Language (TOEFL) for speededness. 

Bejar found that his person-fit statistic was able to identify the presence of speededness in the 
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data sets he examined. Unlike Bejar, we use a likelihood based statistic for evalua tion of speeded 

responses, and study speededness on a response by response basis. 

An IRT-Based Randomization Procedure for Addressing Test Speededness 

The IRT-based randomization procedure proposed in this paper for reducing the effects 

of speededness essentially involves constructing a data set by randomly eliminating examinee 

responses to end-of-test items from a speeded data set in proportion to their likelihood of being 

speeded. Examinee responses are probabilistically excluded (i.e., treated as missing) according to 

their observed response probabilities (i.e., likelihoods) under the NRM. Typical large-scale 

testing programs test a larger number of examinees than is required for adequate IRT parameter 

estimation, making the exclusion of examinees from the calibration data set often of negligible 

cost. However, the loss of examinee data should be weighed against the potential reduction in 

bias by reducing speededness. As with any method for addressing speededness, its potential 

utility should be considered for a given test. 

The proposed procedure is inspired by likelihood-based person-fit methods but differs 

from typical methods in that it considers the likelihood of each item response separately, whereas 

likelihood-based person-fit considers the entire response pattern. A step-by-step description of 

the procedure follows.  

Step 1. Identify a subset of items that likely contain bias due to speededness effects. 

Identification of end-of-test items can be assessed a number of ways. For example, factor 

analysis can be used to identify items that tap a common secondary speededness factor. Or an 

examination of omit frequencies can be used to identify which end-of-test items appear to be 

biased due to speededness. Finally, a survey of examinees could be taken to obtain direct 

information as to which of their responses were speeded.  In our current analysis, we examined 



 8 

nonlinear factor analysis solutions and omit frequencies to identify items likely to contain bias 

due to speededness. 

Step 2. Fit a nominal response model (NRM). Fit the NRM to all items on the test, 

including omitted responses as a separate response category for all items except the end-of-test 

items identified in Step 1. The omit category for end-of-test items will be treated differently as 

described below. 

Step 3. Obtain an estimate of examinee ability uncontaminated by speededness. This 

estimate of ability is obtained to reduce the bias that speededness may have on ability estimates. 

For example, examinee ability estimates could be based on items designated in Step 1 as being 

unspeeded items.  

Obtaining such an estimate of ability may not always be feasible. For example, if 9 items 

on a 10- item test show evidence of speededness, estimating examinee ability based on one item 

would naturally be problematic. However, in most applications it is anticipated that the majority 

of test items will be unspeeded and thus can be used to obtain ability estimates. 

Step 4. Construct an average option response function (ORF) for the omit category 

across unspeeded items. This ORF will later be imposed as the omit ORF for end-of-test items. 

The purpose of constructing this omit ORF independent of the end-of-test items is that 

speededness should lead to more frequent occurrences of omits, while in an unspeeded situation 

omits are less likely. 

Step 5. Apply the average unspeeded omit ORF to the option characteristic curves 

(OCCs) of end-of-test items. This approximates what the expected omitted response probabilities 

should look like for end-of-test items when speededness is not present. Using the set of item 

parameter estimates from Step 2, the constructed omit ORF can still be applied to each end-of-
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test item such that, for a given examinee, all response category probabilities for the item will still 

sum to 1.  

Step 6. For end-of-test items, compute the NRM response likelihood of each observed 

response. The original NRM response probability, Pih(θj ), now represents the conditional 

likelihood that an examinee with ability θj chooses response category h to item i from Equation 

1, assuming the response is not an omit. This likelihood is based on the updated OCCs for end-

of-test items obtained in Step 5 that include the omit category as a possible response. For 

example, using the OCCs in Figure 1, an examinee with ability -1 that selected category ‘E’ has 

a response likelihood of .17. 

Step 7. For end-of-test items, simulate a model-based set of examinee responses and 

compute the NRM response likelihood of each model-based response. Using the updated OCCs 

from Step 5 and examinee ability estimates obtained in Step 3, simulate responses to the end-of-

test items and then compute response likelihoods, Pih(θj ), based on these responses. This results 

in unspeeded model-based simulated item responses for the end-of-test items. For example using 

the OCCs in Figure 1, if we have an examinee with ability -1 whose simulated response is “C”, 

that person’s response likelihood is .62. The reason for simulating this data set is to generate a 

distribution of response likelihoods consistent with unspeeded responding. These data are used 

as a comparison against the response likelihoods of the real data from Step 6.  

Step 8. For each end-of-test item, segment the response likelihoods into bins. Segment the 

response likelihood values for all examinees into bins separated by intervals (e.g., 0 to .1; .1 to 

.2; .2 to .3, etc.). This produces a distribution of real response likelihoods and a distribution of 

simulated response likelihoods for each end-of-test item (see Figure 2a for an example of these 

distributions).  
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Step 9. For each end-of-test item, compute the ratio of real to simulated response 

likelihoods for each bin. Compare the real and simulated distributions of response likelihoods for 

each end-of-test item by computing the ratio of real to simulated frequencies in each bin. This 

ratio is computed by dividing the frequencies of the real distribution by the frequencies of the 

simulated distribution. 

Step 10. For each end-of-test item, set a minimum ratio for the real to simulated response 

likelihoods (to ensure adequate bin sizes) and randomly eliminate item responses in proportion 

to this ratio. Compare this minimum ratio to the smallest ratio obtained across bins (computed in 

Step 9). The smallest bin ratio should be equal to or larger than the minimum ratio. Redefine bins 

as needed by increasing bin widths (repeat Steps 8 and 9) to obtain a smallest bin ratio equal to 

or larger than the minimum ratio. To ensure adequate numbers of examinees in each bin, it may 

be necessary to specify a minimum number of examinees for each bin. 

 Finally, randomly eliminate observed item responses in proportion to the smallest bin 

ratio for each item. In bins having ratios greater than the smallest ratio, randomly eliminate (treat 

as missing) data in each bin to get the bin ratio to the size of the smallest bin ratio, such that the 

relative distributions of real and simulated response likelihoods are the same. This results in a 

“purified” data set in which the real and simulation-based response likelihoods are approximately 

the same. This new data set can then be used for calibrating items via the IRT model used to 

calibrate the operational test (e.g., Rasch model or 3-parameter model). 

Summary. Under the proposed procedure, the real response likelihoods quantify the 

likelihoods of the observed responses to end-of-test items. The simulated response likelihoods 

quantify the likelihoods of the model-based unspeeded responses to end-of-test items. The ratio 

of the real to simulated response likelihoods provides a basis for quantifying the differences in 
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their distributions and the likelihood that particular responses are speeded. The smallest 

allowable ratio is then used to randomly eliminate examinee responses so that the relative 

distributions of response likelihoods are the same. This process is used to reduce the effects of 

speededness.  

Table 1 and Figure 2a present hypothetical real and simulated response likelihood 

distributions for an item containing bias due to speededness. Table 1 and Figure 2b present the 

updated real response likelihood distribution after randomly eliminating data to reflect the 

simulated response likelihood distribution.  

In Figure 2a, several bins have a larger frequency of real responses compared to 

simulated responses and several have a smaller frequency from this representation. The smallest 

bin ratio (real frequencies/simulated frequencies), .5, is used as the ratio that all real response 

likelihood bins must be reduced when randomly eliminating real responses from the data set. For 

each bin, examinees are randomly eliminated from the data set until the bin ratio is .5, which 

results in the comparable distributions observed in Figure 2b. The examinee responses to a given 

end-of-test item that were randomly eliminated are ultimately treated as missing and this updated 

item response data set calibrated. 

Real Data Study 

We used real data from a mathematics placement test (MPT) at a Midwestern university 

to illustrate and examine the proposed randomization procedure for reducing the effects of 

speededness. Test scores on the MPT are used to place university students into their first college 

mathematics course. The MPT consists of 36 five-option multiple-choice items. Two forms of 

the test, Form A and Form B, were examined in this study. Form A contained item responses for 
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10,157 examinees and Form B contained item responses for 2,496 examinees1. These two test 

forms were chosen because 11 items were common across Forms A and B but located at 

different points on the test. Four of the common items were located at the end of the test on Form 

A (items 31, 32, 33, and 34) but at earlier locations on Form B (items 4, 1, 3, and 2). This data 

structure allowed a real-data based evaluation of results using the randomization procedure in 

reducing bias for the end-of-test items on Form A.  

An initial calibration of Form A and Form B data was completed using the computer 

program BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2002). The Rasch model was used 

to calibrate items, as this IRT model is used operationally for the MPT (see Appendix A for a 

description of the Rasch model). Form A item difficulty parameter estimates were scaled to 

Form B item difficulty parameter estimates using common item linking, test characteristic curve 

equating (Stocking and Lord, 1983), and the computer program EQUATE (Baker, 1993). Seven 

common test items in unspeeded locations on both test forms were used as the link. Table 2 lists 

the item parameter estimates for all of the common items across Forms A and B.  

An examination of the percentage of omitted responses for Form A of the MPT showed 

that around 1% to 2% of item responses were omitted through much of the test and that these 

responses rose from 4% to 7% for items toward the end of the test, with a maximum of 7.2% of 

responses omitted for the last item (see the scatterplot in Figure 3). The percentage of omitted 

responses appeared to increase toward the end of the test, consistent with the presence of 

speededness effects. Because there was a larger proportion of omits at the end of the test than at 

the beginning and this proportion reflected a nontrivial number of omitted responses (a 

maximum of 7.2% or 730 examinees), it appeared that omits were useful to include as evidence 

                                                 
1 Far fewer examinees took Form B of the MPT because it was a pilot form. 
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for speededness. Therefore, omits were included in the randomization procedure for the MPT 

data. 

The randomization procedure was applied to Form A of the MPT, resulting in a data set 

for which aberrant responses were randomly excluded from the original item response data set. 

Each step of the procedure is reported below. The updated item response data set was then 

calibrated using the Rasch model and scaled to Form B to compare end-of-test item difficulties 

on Form A to the item difficulties of the same items in earlier locations on Form B. 

Evaluation of the success of the procedure was considered in two ways. First, the 

differences in difficulty parameter estimates were examined across Form A and Form B before 

and after applying the randomization procedure. Second, the cumulative difference across items 

was compared by plotting the difference between test characteristic curves (TCCs) for the end-

of-test items. TCCs display the expected sum scores across ability on the items that were in 

speeded locations on Form A and unspeeded locations on Form B. The difference between TCCs 

was computed as TCCA(θ) – TCCB(θ), where TCCA(θ) and TCCB(θ) are the expected sum scores 

at ability θ for Form A and Form B, respectively. To summarize the difference in TCCs across 

Form A and Form B, an expected standardized difference index (ESDI) was calculated. The 

ESDI is the average squared difference between probabilities of correct response weighted by the 

distribution of ability. The equation for the ESDI is as follows: 
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where 

)(θw  is the weight based on the distribution of ability θ , 

)(θATCC is the expected sum score for Form A end-of-test items at a given ability, and  
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)(θBTCC  is the expected sum score for Form B end-of-test items at a given ability. 

Results 

 The randomization procedure was applied to end-of-test items on Form A of the MPT. 

Each step of the procedure is described below. 

Step 1. Identify items that show evidence of speededness. We identified items that showed 

evidence for speededness on the MPT in two ways. First, we examined the plot mentioned above 

displaying the percentage of omits for each item (see Figure 3) to observe the location on the test 

where omitting behavior appeared to become more frequent. Looking at Figure 3, the percentage 

of omits increases as item number increases (i.e., as we get closer to the end of the test). 

However, omits for the last four test items are particularly pronounced, with a percentage of 

omits around 6% to 7%. Also, between item 32 (five items from the end) and item 33 (four items 

from the end) there is a jump in percentage of omits from about 3.5% to almost 6%, which we 

might expect if examinees tend to become speeded at a similar point on the test. However, as 

mentioned above, cons idering only omits to identify items biased by speededness will likely 

underestimate the number of such items as examinees may also be rushed and/or guess on items. 

The second method used to identify potential items biased by speededness was nonlinear 

factor analysis (via NOHARM; Fraser, 1988). The factor loadings from an exploratory two-

factor solution are listed in Table 3. All items load highly on the first factor, consistent with a 

primary factor underlying all test items. The last six items (and only the last six items) resulted in 

large loadings for a second factor, consistent with a speededness factor. Thus, the last six items 

were identified as the end-of-test items for which the effects of speededness would be reduced. 

 Step 2. Fit a nominal response model (NRM). A NRM was fit to the data set (using 

MULTILOG; Thissen, Chen, & Bock, 2003), fixing the omit category to zero for the end-of-test 
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items identified in Step 1. The resultant NRM parameter estimates are listed in Appendix B. An 

estimated ORF for the omit category was added to the end-of-test items later using the procedure 

described earlier. 

 Step 3. Obtain an estimate of examinee ability uncontaminated by speededness. 

Examinee ability estimates were based on unspeeded items only, to reduce potential bias due to 

speededness. For the MPT data, the last six items showed evidence of speededness, so these 

items were not used for ability estimation. These estimates of examinee ability were later used to 

estimate real and simulated response likelihoods for each examinee to each item (described 

below). 

 Steps 4 and 5. Construct an option response function (ORF) for the omit category, 

consistent with unspeeded responding. Apply the constructed unspeeded omit ORF to the OCCs 

of end-of-test items. To approximate an unspeeded ORF for the omitted responses, the average 

ORF for the omit category across all unspeeded items was constructed. This ORF was 

constructed using the omitted response NRM parameter estimates for each unspeeded item and a 

fixed set of points on the ability scale. The first 30 items on the test were used as a basis for this 

unspeeded omit ORF. Defining the unspeeded omit ORF differently may lead to different omit 

ORFs and ultimately to different results. For example, the ORF could be based on the average of 

the omit ORFs for the first several test items. However, in the MPT data, such an ORF would 

differ little from one based on the first 30 items because the probability of an omitted response is 

very small across all unspeeded items. The OCC corresponding to this ORF is displayed in 

Figure 4. This average OCC was then applied to the NRM OCCs for each end-of-test item 

estimated in step 2. These OCCs are used as the basis for calculating real and simulated response 

likelihoods and are listed in Figures 5a through 5f. 
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 Steps 6, 7, 8, and 9. For end-of-test items, compute the likelihood of each observed 

response. Simulate a model-based set of examinee responses and compute the likelihood of each 

model-based response. Segment the response likelihoods into bins. Compute ratios of real to 

simulated response likelihoods for each bin. Recall that the observed response likelihoods are the 

NRM likelihoods of the response category chosen by each examinee and that the simulated 

response likelihoods are the NRM likelihoods of the response category based on simulated 

responses. Each of these response likelihoods was calculated for the real and simulated data and 

distributions of these response likelihoods are displayed in Figures 6a through 6f. In addition, 

ratios of real to simulated responses for each bin of each end-of-test item are displayed in Table 

4. Of note, bin number 1, which reflects small response likelihoods, had a ratio greater than one 

for each of the six end-of-test items. The bin ratio for bin number 1 in each of the end-of-test 

items was 1.02, 1.23, 1.31, 1.54, 1.93, and 1.46, respectively. This means that a larger number of 

examinees responded to end-of-test items in a way that resulted in smaller response likelihoods 

than would be expected under the NRM.  

 Step 10. Set a minimum ratio for the real to simulated response likelihoods (to ensure 

adequate bin sizes) and randomly eliminate item responses in proportion to this ratio. Response 

likelihood distributions based on real and simulated data after randomly eliminating examinee 

responses are displayed in Figures 7a through 7f. Notice that for each item, the real response 

likelihood distributions are all proportional to the real response likelihood distributions. 

Ultimately, we are interested in using the randomization procedure to reduce bias in IRT 

item parameter estimates of end-of-test items for the IRT model used to calibrate and/or score 

the test. Table 5 lists the common updated Rasch model difficulty parameters for Form A after 

scaling them to Form B MPT parameter estimates. For the four common items at the end of the 
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test on Form A and at the beginning of the test on Form B, the item difficulties for three out of 

four of the items were closer to Form B estimates after applying the randomization procedure. 

All 36 item difficulty parameter estimates before and after applying the randomization procedure 

are listed in Appendix C. 

We also examined the reduction in bias for the four items together. Differences between 

test characteristic curves for Form A and Form B on the four common items before applying the 

randomization procedure are displayed in Figure 8a. The ESDI between Form A and Form B on 

these four items is 0.018. Differences between test characteristic curves for Form A and Form B 

on the four common items after applying the randomization procedure are displayed in Figure 

8b.  The ESDI between Form A and Form B on these four items is 0.005. Therefore, the 

difference quantified by the ESDI was reduced by over 70%. 

Discussion 

 Speededness is a potential source of bias on item and test characteristics. Methods for 

identifying and reducing speededness effects are important for addressing this potential source of 

bias and to ensure a better evaluation of how the items will perform when administered at 

different locations on new forms. This study presented one practical IRT-based method for 

reducing speededness effects that considers the likelihood of response under the NRM as a basis 

for probabilistically eliminating aberrant responses. The procedure can be applied to data sets 

having large numbers of examinees and items, typical of large testing programs.  

 The results of applying the procedure to the MPT showed that item parameter estimates 

tended to be closer to those item parameter estimates observed when the items were administered 

at earlier locations on a different test form. Also, the difference in expected sum scores across 

end-of-test items was reduced when applying the randomization procedure. 
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 For researchers already familiar with methods of person fit, this study illustrates an 

application of a method that falls within the same general framework but that considers (a) 

unordered item response choices via the NRM and (b) a specific type of response aberrance 

(speededness). It is important to note that the method is not restricted to studying speededness. If 

some number of identifiable items is suspected of containing bias for a known reason, the 

randomization procedure could be applied in a similar way to reduce the bias. For example, if a 

subset of examinees carelessly responded to long items (i.e., items with many words) by ignoring 

the questions and picking the first response option that appeared reasonable, the randomization 

procedure may be useful to apply. 

 A potential limitation of the randomization procedure is that the end-of-test NRM item 

parameter estimates for all categories except omits, are biased by speededness. However, these 

parameter estimates are the basis for constructing response likelihood distributions and randomly 

eliminating responses. As such, the procedure carries bias due to speededness through the 

process of reducing the effects of speededness, which may affect its ability to minimize bias due 

to speededness. A possible solution is to iteratively apply the procedure by using the updated 

item parameter estimates after applying the randomization procedure once as the initial item 

parameter estimates in a subsequent application of the procedure. 

 A limitation of this study is the generalizability of the randomization procedure to other 

data sets, as we have only illustrated its utility using one real data set. Simulation studies will be 

useful for examining how well the procedure works under a range of conditions when the true 

underlying item and test characteristics are known. We are currently undertaking one such study. 
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 Table 1 
Example real and simulated response likelihood bin counts and ratios for a hypothetical item 
 

Bin 
Observed 

Count 

Model-
based 
Count 

Ratio 
(Obs./Model) 

Observed 
Count after 

random 
elimination 

Ratio after 
random 

elimination 

.1 - .2 500 500 1 250 0.5 

.2 - .3 1000 500 2 250 0.5 

.3 - .4 1000 500 2 250 0.5 

.4 - .5 1500 1000 1.5 500 0.5 

.5 - .6 1500 1500 1 750 0.5 

.6 - .7 1500 2000 0.75 1000 0.5 

.7 - .8 1500 3000 0.5* 1500 0.5 

.8 - .9 1000 500 2 250 0.5 
.9 - 1 500 500 1 250 0.5 

*Smallest ratio value; used as the ratio for random elimination of data in observed counts. 
 



 23 

Table 2 
Item parameter estimates for common items across Form A and Form B of the mathematics 
placement test 
 

Item Number 
Math Form B 

Form B 
Difficulty 
Parameter 
Estimate 

Item Number 
Math Form A 

Form A 
Difficulty 
Parameter 
Estimate 

Difference 
in Difficulty 
Parameter 
Estimates 

20 0.36 11 0.56 0.20 
12 0.66 16 0.49 -0.17 
5 -0.42 22 -0.43 -0.01 
15 0.19 23 0.23 0.04 
19 -0.28 25 -0.25 0.03 
28 0.37 27 0.27 -0.10 
22 -0.09 30 -0.07 0.02 
4 -0.79 31 -0.64 0.15 
1 -1.51 32 -1.09 0.42 
3 -0.31 33 -0.26 0.05 
2 -0.04 34 0.07 0.11 

Note: The items shaded in grey were not used to link Form A to Form B. These items can be 
used to examine the bias in end-of-test items for Form A. The item in the last row is located at 
the end of the test on both forms, making bias examination difficult. 
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Table 3 
Two-factor exploratory factor analysis solution for MPT Form A 
 

Item Factor 1 Factor 2 
1 0.471 0.000 
2 0.517 -0.009 
3 0.463 0.028 
4 0.418 0.013 
5 0.522 -0.019 
6 0.545 -0.049 
7 0.636 -0.067 
8 0.580 -0.138 
9 0.563 -0.037 
10 0.547 -0.006 
11 0.477 -0.086 
12 0.414 -0.058 
13 0.337 0.080 
14 0.443 0.159 
15 0.329 0.082 
16 0.448 -0.028 
17 0.202 -0.050 
18 0.567 -0.032 
19 0.573 0.102 
20 0.566 -0.023 
21 0.512 0.070 
22 0.508 0.052 
23 0.585 0.003 
24 0.546 -0.046 
25 0.468 0.165 
26 0.381 0.203 
27 0.570 0.089 
28 0.643 0.246 
29 0.431 0.091 
30 0.388 0.150 
31 0.345 0.414 
32 0.501 0.567 
33 0.473 0.371 
34 0.575 0.255 
35 0.528 0.407 
36 0.589 0.249 
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Table 4 
Observed to expected ratios in each response likelihood bin for end-of-test items on the 
mathematics placement test. 
 

Item Number 
Bin* 31 

 
32 
 

33 
 

34 
 

35 
 

36 
 

1 1.02 1.23 1.31 1.54 1.93 1.46 
2 0.72** 1.00 0.93 0.92 1.00 0.99 
3 1.12 0.88** 0.86** 1.02 0.90 0.93 
4 1.04 0.93 1.01 0.89 0.90 0.91 
5 0.98 0.96 1.01 0.89 0.92 0.85 
6 1.01 0.97 0.93 0.85** 0.86** 0.85** 
7 -- -- 0.90 0.97 0.90 0.97 
8 -- -- 0.92 0.93 0.91 0.94 
9 -- -- 0.99 1.01 0.95 1.01 
10 -- -- 1.04 0.98 0.99 0.99 

*Note that the number of bins varied by item to ensure adequate bin sizes. The range of response 
likelihoods reflected by each bin corresponds to one divided by the number of bins (e.g., for item 
31, the bin width is 1/6 or .167. 
**Smallest ratio value; used as the ratio for random elimination of data in observed counts. 
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Table 5 
Item parameter estimates for common items across Form A and Form B of the Mathematics 
Placement Test before and after applying the randomization procedure to Form A end-of-test 
items. 
 

Item Number 
Form B 

Form B 
Difficulty 
Parameter 
Estimate 

Item Number 
Form A 

Form A 
Difficulty 
Parameter 
Estimate 

Form A 
Difficulty 
Parameter 

Estimate After 
Applying 

Randomization 
Procedure 

20 0.36 11 0.56 0.56 
12 0.66 16 0.49 0.49 
5 -0.42 22 -0.43 -0.43 
15 0.19 23 0.23 0.24 
19 -0.28 25 -0.25 -0.25 
28 0.37 27 0.27 0.27 
22 -0.09 30 -0.07 -0.07 
4 -0.79 31 -0.64 -0.64 
1 -1.51 32 -1.09 -1.23 
3 -0.31 33 -0.26 -0.35 
2 -0.04 34 0.07 -0.02 

Note: The items shaded in grey were not used to link Form A to Form B.  
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Figure 1 
Example Option Characteristic Curves for a Nominal Response Model with Six Categories 
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 Item Response Option 
NRM 

Parameter 
A B C** D E Omit 

a 0.0 -0.3 1.0 -0.1 0.1 -0.7 
c 0.9 0.9 4.3 1.2 2.1 -5.0 

 **Correct response. 
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Figure 2a 
Plot of example real and simulated response likelihood bin counts for a hypothetical item.  
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Figure 2b 
Plot of example real and simulated response likelihood bin counts after randomly eliminating 
data from observed bins for a hypothetical item.  
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Figure 3 
Scatterplot of percentage of omits by item number for Form A of the mathematics placement test 
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Figure 4 
OCC for constructed unspeeded omit ORF for the mathematics placement test. 
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Figure 5a  
OCCs for item 31 of the mathematics placement test from step 5 of the randomization procedure. 

Speeded Item  1

Theta

P
ro

ba
bi

lit
y

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
B
C
D
E
Omit

 
Figure 5b 
OCCs for item 32 of the mathematics placement test from step 5 of the randomization procedure. 
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Figure 5c 
OCCs for item 33 of the mathematics placement test from step 5 of the randomization procedure. 
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Figure 5d 
OCCs for item 34 of the mathematics placement test from step 5 of the randomization procedure. 
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Figure 5e 
OCCs for item 35 of the mathematics placement test from step 5 of the randomization procedure. 

Speeded Item  5

Theta

P
ro

ba
bi

lit
y

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
B
C
D
E
Omit

 
Figure 5f 
OCCs for item 36 of the mathematics placement test from step 5 of the randomization procedure. 
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Figure 6a  
Real and simulated response likelihood bins for item number 31 of the mathematics placement 
test.  
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Figure 6b 
Real and simulated response likelihood bins for item number 32 of the mathematics placement 
test.  
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Figure 6c 
Real and simulated response likelihood bins for item number 33 of the mathematics placement 
test.  
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Figure 6d 
Real and simulated response likelihood bins for item number 34 of the mathematics placement 
test. 
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Figure 6e 
Real and simulated response likelihood bins for item number 35 of the mathematics placement 
test. 
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Figure 6f 
Real and simulated response likelihood bins for item number 36 of the mathematics placement 
test. 
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Figure 7a 
Real and simulated response likelihood bins for item number 31 of the mathematics placement 
test after randomly eliminating aberrant responses. 
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Figure 7b 
Real and simulated response likelihood bins for item number 32 of the mathematics placement 
test after randomly eliminating aberrant responses. 
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Figure 7c 
Real and simulated response likelihood bins for item number 33 of the mathematics placement 
test after randomly eliminating aberrant responses. 

1 2 3 4 5 6 7 8 9 10

Observed
Expected

0

500

1000

1500

2000

2500

C
o

u
n

ts

Bin

Observed

Expected

 
 



 37 

Figure 7d 
Real and simulated response likelihood bins for item number 34 of the mathematics placement 
test after randomly eliminating aberrant responses. 

1 2 3 4 5 6 7 8 9 10

Observed
Expected

0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
o

u
n

ts

Bin

Observed

Expected

 
 
Figure 7e 
Real and simulated response likelihood bins for item number 35 of the mathematics placement 
test after randomly eliminating aberrant responses. 
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Figure 7f 
Real and simulated response likelihood bins for item number 36 of the mathematics placement 
test after randomly eliminating aberrant responses. 
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Figure 8a 
Difference in TCCs for four common items in end-of-test locations on Form A and beginning-of-
test locations on Form B before applying the randomization approach (ESDI: .018) 
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Figure 8b 
Difference in TCCs for four common items in end-of-test locations on Form A and beginning-of-
test locations on Form B after applying the randomization approach (ESDI: .005) 
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Appendix A 
Description of the Rasch Model 

 
The Rasch model (Rasch, 1960) is a dichotomous IRT model that identifies the 

probability of examinee j answering item i correctly as )(

)(

1
),|1(

ij

ij

e

e
uP ijij βθ

βθ

βθ −

−

+
== , where u ij is 

the response to the item (0 = incorrect, 1 = correct), β i, is the item difficulty parameter, and θj is 

the examinee ability parameter. 

For each item, the probability that an examinees at various abilities will respond correctly 

to an item can be plotted (this plot is commonly referred to as an item characteristic curve or 

ICC). A Rasch model ICC for one item (with difficulty parameter equal to zero) is presented in 

the figure below. This ICC can be used to identify the probability that a given examinee will 

answer an item correctly. For example, an examinee with ability 0 has a .5 probability of 

correctly responding to the item plotted below. 
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Appendix B 
NRM parameter estimates for Form A of the mathematics placement test 

 
NRM a Parameter Estimate Item 

a1 a2 a3 a4 a5 a6 
1 -0.17 -0.53 0.81 -0.31 -0.07 0.25 
2 -0.40 -0.60 -0.31 0.19 1.05 0.01 
3 -0.38 -0.41 0.85 0.01 0.01 -0.13 
4 -0.64 -0.22 0.69 -0.40 0.38 0.11 
5 -0.40 1.03 -0.08 0.18 -0.39 -0.39 
6 -0.66 -0.16 -0.31 -0.03 0.83 0.25 
7 -0.19 -0.56 1.06 -0.14 -0.24 0.04 
8 0.32 -0.53 -0.53 1.02 -0.23 -0.02 
9 0.89 -0.08 -0.16 -0.16 -0.58 0.20 
10 -0.51 -0.32 -0.18 0.87 0.30 -0.21 
11 -0.59 0.71 -0.19 -0.46 0.17 0.30 
12 0.63 -0.33 -0.61 -0.20 0.11 0.46 
13 0.11 -0.84 0.58 -0.09 -0.37 0.63 
14 -0.61 -0.55 -0.05 0.72 0.46 -0.03 
15 0.55 -0.26 -0.05 -0.07 -0.30 0.19 
16 0.22 0.70 -0.06 -0.25 -0.22 -0.36 
17 -0.45 0.23 -0.18 0.22 -0.18 0.31 
18 1.15 0.21 -0.50 -0.05 0.02 -0.70 
19 -0.25 -0.21 -0.51 1.11 -0.12 -0.04 
20 -0.36 -0.07 -0.89 0.78 -0.11 0.60 
21 1.15 -0.10 0.29 -0.03 0.04 -1.21 
22 0.46 -0.25 0.21 1.28 -0.38 -1.27 
23 0.11 1.29 0.21 -0.14 0.30 -1.76 
24 -0.28 -0.69 -0.10 0.86 0.27 -0.10 
25 -0.31 0.65 -0.21 -0.30 -0.37 0.51 
26 0.80 0.02 -0.10 -0.59 0.03 -0.06 
27 0.96 -0.19 -0.47 0.04 -0.38 0.15 
28 1.42 -0.29 -0.57 -0.59 -0.17 0.37 
29 0.32 0.79 -0.29 -0.01 -0.23 -0.54 
30 -0.69 -0.11 0.02 0.60 -0.04 0.14 
31 -0.45 -0.07 0.54 -0.24 0.01 * 
32 -0.89 0.17 -0.25 -0.51 1.23 * 
33 -0.20 0.78 -0.41 -0.25 0.01 * 
34 -0.11 -0.37 -0.39 1.01 -0.19 * 
35 -0.59 0.17 -0.36 1.13 -0.44 * 
36 -0.23 -0.24 -0.20 1.05 -0.30 * 

*Parameters for end-of-test item omitted responses were fixed. 
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Appendix B (continued) 
NRM parameter estimates for Form A of the mathematics placement test 

 
NRM c Parameter Estimate Item 

c1 c2 c3 c4 c5 c6 
1 1.09 1.03 4.41 1.30 2.24 -9.95 
2 -0.81 -0.32 0.11 1.32 2.94 -3.35 
3 0.88 0.26 3.63 0.91 0.03 -5.60 
4 1.24 2.59 4.32 0.07 1.81 -9.87 
5 1.97 3.74 0.81 3.36 0.40 -10.05 
6 0.70 0.95 0.17 1.45 2.25 -5.44 
7 3.16 1.69 3.47 1.65 0.68 -10.28 
8 2.73 2.21 1.14 2.59 1.42 -9.78 
9 3.00 2.37 2.09 2.73 0.92 -10.75 
10 1.08 2.18 2.41 3.03 1.27 -9.84 
11 0.70 1.29 0.84 -0.67 1.34 -3.41 
12 2.21 1.30 -1.01 0.09 1.76 -4.10 
13 0.94 -0.73 3.54 0.78 -0.02 -4.40 
14 0.86 1.91 2.27 3.83 1.11 -9.88 
15 5.19 1.23 1.76 4.25 1.02 -12.83 
16 0.77 1.59 1.27 0.85 0.80 -5.18 
17 -0.58 1.88 1.45 0.89 0.57 -4.29 
18 1.86 2.17 0.59 0.15 0.91 -5.46 
19 1.52 2.67 0.78 4.06 0.61 -9.45 
20 0.62 0.03 0.98 2.01 1.92 -5.49 
21 3.03 1.43 1.30 0.12 0.75 -6.27 
22 1.85 0.18 1.64 3.32 -0.46 -6.31 
23 1.25 2.54 2.44 0.92 0.53 -7.52 
24 0.16 0.85 2.22 1.62 0.64 -5.47 
25 -0.44 2.55 1.44 0.46 0.67 -4.72 
26 3.45 0.12 0.57 -1.57 1.37 -3.54 
27 2.90 1.35 1.59 2.58 1.97 -10.05 
28 4.20 1.61 1.30 1.02 1.91 -9.55 
29 1.46 1.90 1.35 1.00 0.26 -5.79 
30 -0.32 0.80 0.51 2.04 0.85 -3.92 
31 0.69 0.33 2.89 0.21 0.57 * 
32 0.58 1.20 1.17 1.59 5.03 * 
33 1.58 3.71 1.91 1.81 1.61 * 
34 1.58 1.27 1.56 3.29 2.59 * 
35 1.16 2.80 2.14 4.00 -0.31 * 
36 2.42 1.27 2.36 3.11 1.01 * 

*Parameters for end-of-test omitted responses were fixed. 
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Appendix C 
Rasch Model Item Difficulty Parameter Estimates for Form A of the Mathematics 

Placement Test Before and After Applying the Randomization Procedure  
 

 Before Applying the  
Randomization Procedure 

After Applying the 
Randomization Procedure 

Item Rasch Difficulty Standard Error Rasch Difficulty Standard Error 

1 -0.86 0.03 -0.87 0.03 
2 -0.64 0.02 -0.64 0.02 
3 -0.98 0.03 -0.98 0.03 
4 -0.69 0.02 -0.69 0.02 
5 -0.03 0.02 -0.03 0.02 
6 0.03 0.02 0.03 0.02 
7 0.07 0.02 0.07 0.02 
8 0.52 0.02 0.52 0.02 
9 0.34 0.02 0.34 0.02 
10 0.15 0.02 0.15 0.02 
11 0.56 0.02 0.56 0.02 
12 0.12 0.02 0.12 0.02 
13 -1.08 0.03 -1.09 0.03 
14 -0.43 0.02 -0.44 0.02 
15 -0.53 0.02 -0.53 0.02 
16 0.49 0.02 0.49 0.02 
17 0.21 0.02 0.21 0.02 
18 0.46 0.02 0.46 0.02 
19 -0.49 0.02 -0.49 0.02 
20 0.30 0.02 0.30 0.02 
21 -0.36 0.02 -0.36 0.02 
22 -0.43 0.02 -0.43 0.02 
23 0.23 0.02 0.24 0.02 
24 0.63 0.03 0.63 0.02 
25 -0.25 0.02 -0.25 0.02 
26 -0.95 0.03 -0.95 0.03 
27 0.27 0.02 0.27 0.02 
28 -0.59 0.03 -0.59 0.03 
29 0.42 0.02 0.42 0.02 
30 -0.07 0.02 -0.07 0.02 
31 -0.64 0.02 -0.64 0.03 
32 -1.09 0.03 -1.23 0.03 
33 -0.26 0.02 -0.35 0.03 
34 0.07 0.02 -0.02 0.03 
35 -0.22 0.02 -0.37 0.03 
36 0.20 0.02 0.12 0.03 

 


